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Abstract
We calculate the first integrals of the Kepler problem by the method of Jacobi’s
last multiplier using the symmetries for the equations of motion. Also we
provide another example which shows that Jacobi’s last multiplier together
with Lie symmetries unveils many first integrals neither necessarily algebraic
nor rational whereas other published methods may yield just one.

PACS numbers: 02.20.Sv, 02.30.Hq, 45.50.Jf, 95.10.Ce

1. Introduction

In his sixteenth lecture on dynamics [15] Jacobi uses his method of the last multiplier [12–14]
to derive the components of the Laplace–Runge–Lenz vector for the two-dimensional Kepler
problem. It is not surprising that Jacobi did not refer to the first integrals obtained as
components of the Laplace–Runge–Lenz vector since Runge [35] and Lenz [25] had yet
to write on the subject. However, one is surprised at the omission of a reference to the work
of Laplace [19] by whom the components of the vector were derived fewer than 70 years
earlier in somewhat less crowded times. Indeed one is a little surprised at Jacobi’s neglect
of the pioneering derivation by Ermanno [9], Herman [11] and Bernoulli [3] given Jacobi’s
prolonged exposures to Italian matters, among others his participation in the Congress of
the Italian Scientists in 1843 at Lucca [2]. In his development Jacobi uses the approach to
determine the last multiplier through a linear first-order partial differential equation.

A less classical approach to the derivation of the Laplace–Runge–Lenz vector is that of
vectorial manipulation of the vector equation of motion by Bleuler and Kustaanheimo [5] and,
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in a more popular context, by Collinson [6, 7]. We recall that the reduced equation of motion
for the Kepler problem is

r̈ = − µ

r3
r (1)

and that the angular momentum, L := r × ṙ, is a conserved quantity. The vector product of L
with (1) is integrable to give the conserved vector

J = L × ṙ − µr̂. (2)

This is, of course, the celebrated vector. In fact one can integrate (1) directly given the
conservation of angular momentum to obtain Hamilton’s vector [10], namely

K = ṙ + µ ˆ̂θ, (3)

where ˆ̂θ is the unit vector in the direction of increasing angle on the plane of the orbit.
The technique of vectorial manipulation of the equation of motion has been extended

to a number of problems emanating from generalizations of the Kepler problem sharing a
common property which is the possession of a conserved vector of a nature similar to that of
the Laplace–Runge–Lenz vector [20–23].

When one considers the ease of integration of the Kepler problem, it is also a little
surprising that the equation of motion, (1), possesses just five Lie point symmetries with the
algebra A2 ⊕ so(3). We refer to the easy manipulation of the equation of motion to obtain
the first integrals rather than the formal notion of integrability which has a technical meaning
not at the point of this remark. Although the Kepler problem has a sufficient number of point
symmetries to guarantee reduction to a series of quadratures [27], integrability in the sense
of Lie, the number of point symmetries is fewer than the order of the system and so one can
only be surprised at the ease of derivation of the first integrals. These five symmetries are
insufficient to specify completely (1). Krause [17, 18] remedied this deficit by an ingenious
stratagem. This was to postulate the existence of a symmetry of the form

� =
(∫

ξ dt

)
∂t + ηi∂xi

. (4)

The nonlocality of the coefficient function of ∂t did not intrude upon the determination of the
form of (1) since the A2 subalgebra contains ∂t as one of its two elements—the other is the
rescaling symmetry usually associated with the Laplace–Runge–Lenz vector and Kepler’s
third law—and so (1) is necessarily autonomous. With this device, Krause found a further
three symmetries of the form

Γ =
(

2
∫

r dt

)
∂t + rr.∂r, (5)

where r = (x1, x2, x3), and with these additional symmetries was able to specify completely
(1) starting from the general equation

r̈ = f(t, xi, ẋi). (6)

Subsequently Nucci [29] showed that the additional symmetries obtained by Krause had a point
origin in a reduced system. The method of reduction of order [31] was shown to be applicable,
mutatis mutandis, to a wide range of equations possessing a conserved vector of the type of
the Laplace–Runge–Lenz vector [32]. When the Ermanno–Bernoulli constants were used to
define the independent variables, (1) was shown [24] to be reducible to a two-dimensional
simple harmonic oscillator plus a conservation law and, since the complete symmetry group
of the two-dimensional simple harmonic oscillator is five dimensional [1], the number of
symmetries required to specify completely the Kepler problem was smaller than originally
reported by Krause. However, that number necessarily included the symmetries derived by
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Krause so that the credit for spearheading a new development in a problem of over three and
a quarter centuries existence remains his.

2. Jacobi’s last multiplier

The method of Jacobi’s last multiplier, M, provides a means to determine an integrating factor
of the partial differential equation

Af =
n∑

i=1

ai

∂f

∂xi

= 0 (7)

or its equivalent associated Lagrange’s system

dx1

a1
= dx2

a2
= · · · = dxn

an

. (8)

The multiplier is given by

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= MAf, (9)

where

∂(f, ω1, ω2, . . . , ωn−1)

∂(x1, x2, . . . , xn)
= det




∂f

∂x1
· · · ∂f

∂xn

∂ω1

∂x1

∂ω1

∂xn

...
...

∂ωn−1

∂x1
· · · ∂ωn−1

∂xn




= 0 (10)

and ω1, . . . , ωn−1 are n − 1 solutions of (7) or, equivalently, first integrals of (8). One can
prove that each multiplier is a solution of a linear partial differential equation, namely

n∑
i=1

∂(Mai)

∂xi

= 0. (11)

In general a different selection of integrals produces another multiplier, M ′. An important
property of the last multiplier is that the ratio, M/M ′, is a solution of (7), equally a first integral
of (8). Naturally the ratio may be quite trivial.

In its original formulation the method of Jacobi’s last multiplier required almost complete
knowledge of the system, (7) or (8), under consideration. Since the existence of a solution/first
integral is consequent upon the existence of symmetry, an alternative formulation in terms of
symmetries was provided by Lie [26, pp 333–47]. A clear treatment of the formulation in
terms of solutions/first integrals (pp 456–61) and symmetries (pp 461–4) is given by Bianchi
[4]. If we know n − 1 symmetries of (7)/(8), say

�i = ξij ∂xj
, i = 1, n − 1, (12)

Jacobi’s last multiplier is given by M = �−1, provided that � �= 0, where

� = det




a1 · · · an

ξ1,1 ξ1,n

...
...

ξn−1,1 · · · ξn−1,n


 . (13)
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There is an obvious corollary to the results of Jacobi mentioned above. In the case that
there exists a constant multiplier, the determinant is a first integral. This result is potentially
very useful in the search for first integrals of systems of ordinary differential equations. The
differential equation to be solved for Jacobi’s last multiplier is [15, p 126]

0 = d log(M)

dt
+

n∑
i=1

∂Wi

∂wi

, (14)

where M is the multiplier and the equation of motion has components ẇi = Wi . Consequently,
if each component of the vector field of the equation of motion is free of the variable associated
with that component, i.e. ∂Wi/∂wi = 0 (no summation in this case), the last multiplier is a
constant. This feature was recently put to good use with the Euler–Poinsot system [33].

3. Kepler problem

The original derivation of the Ermanno–Bernoulli constants was, naturally, in terms of
Cartesian coordinates, but the facility of using polar coordinates has long been established for
central force problems. Unfortunately in polar coordinates the vector field of the equation of
motion does not have the attractive property that ∂Wi/∂wi = 0 which gives a first integral
directly from the corollary. However, the Cartesian representation of the equations of motion
has and so in this work we use the Cartesian form so that we can calculate the first integrals
of the Kepler problem directly from the vector fields of the equation of motion and the
symmetries. We should mention that Marcelli and Nucci [27] have shown that first integrals
can be obtained by Lie group analysis even if the system under study does not come from a
variational problem, i.e. we can find first integrals without making use of Noether’s theorem
[28]. The only limitation is the absence of one of the unknowns in the expression for the first
integral. The first integrals correspond to the characteristic curves of determining equations
of parabolic type which are constructed by the method of Lie group analysis, following
the application of Nucci’s method of reduction of order [29]. In [27] the method was also
applied to the Kepler problem; using Lie symmetries the Cartesian components of the angular
momentum were derived and the Kepler problem was reduced to a second-order linearizable
equation. The Kepler problem is of the sixth order and autonomous so that one needs a 6 × 6
matrix which requires the equation of motion and five symmetries excluding ∂t . Note that in
general, i.e. for a nonautonomous system, it would be necessary to use a 7 × 7 matrix for a
sixth-order system since there are seven variables. Effectively the autonomy of the system
allows us to strike out a row and a column of the matrix.

We write the equation of motion as a six-dimensional system of first-order ordinary
differential equations, namely

ω̇1 = ω4 ω̇2 = ω5 ω̇3 = ω6

ω̇4 = − µω1(
ω2

1 + ω2
2 + ω3

3

)3/2 ω̇5 = − µω2(
ω2

1 + ω2
2 + ω3

3

)3/2 (15)

ω̇6 = − µω3(
ω2

1 + ω2
2 + ω3

3

)3/2 .

The standard Lie point symmetries are

�1 = ∂t

�2 = 3t∂t + 2ω1∂ω1 + 2ω2∂ω2 + 2ω3∂ω3 − ω1∂ω1 − ω2∂ω2 − ω3∂ω3

�3 = −ω3∂ω2 + ω2∂ω3 − ω6∂ω5 + ω5∂ω6
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�4 = ω3∂ω1 − ω1∂ω3 + ω6∂ω4 − ω4∂ω6

�5 = −ω2∂ω1 + ω1∂ω2 − ω5∂ω4 + ω4∂ω5

(16)

and the three nonlocal symmetries of Krause are

�6 =
(

2
∫

ω1 dt

)
∂t + ω1

(
ω1∂ω1 + ω2∂ω2 + ω3∂ω3

)

+ (ω2ω4 − ω1ω5) ∂ω5 + (ω3ω4 − ω1ω6) ∂ω6

�7 =
(

2
∫

ω2 dt

)
∂t + ω2

(
ω1∂ω1 + ω2∂ω2 + ω3∂ω3

)
(17)

+ (ω1ω5 − ω2ω4) ∂ω4 + (ω3ω5 − ω2ω6) ∂ω6

�8 =
(

2
∫

ω3 dt

)
∂t + ω3

(
ω1∂ω1 + ω2∂ω2 + ω3∂ω3

)

+ (ω1ω6 − ω3ω4) ∂ω4 + (ω2ω6 − ω3ω5) ∂ω5 .

Without additional symmetries such as those provided by Krause, the calculation of the
integrals using the determinental method of Jacobi’s last multiplier would not be possible no
matter which coordinate system one preferred. Andriopoulos et al [24] provided several
symmetries additional to those derived by Krause. However, these are nonlocal in the
coefficient functions of the dependent variables and so the nonlocality is not automatically
removed by the symmetry of time translation, ∂t . We note that Jacobi [15] used both Cartesian
(Vorlesung 16) and polar (Vorlesung 24) coordinates in his treatment of the Kepler problem.

To construct the matrix for the calculation of the first integral, we use the vector field
of (15) and five of the seven symmetries listed in (16) less �1 and (17). The effect of the
excision of the first column which belongs to the independent variable is to avoid inclusion of
the nonlocal part of any of the nonlocal symmetries in (17) contained in the matrix. By way
of illustration the matrix we obtain with the choice of �2 − �6 is

A78 =




ω4 ω5 ω6 −µω1

r
−µω2

r
−µω3

r

2ω1 2ω2 2ω3 −ω4 −ω5 −ω6

0 −ω3 ω2 0 −ω6 ω5

ω3 0 −ω1 ω6 0 −ω4

−ω2 ω1 0 −ω5 ω4 0

ω2
1 ω1ω2 ω1ω3 0 ω2ω4 − ω1ω5 ω3ω4 − ω1ω6




, (18)

where we have used r2 = ω2
1 + ω2

2 + ω2
3 to keep the matrix as compact as possible, in which

we have used the symmetries omitted in Aij to identify the particular matrix. Using Maple 7
the evaluation of the determinant of A78 gives

D78 = [
ω2

1ω
2
5 + ω2

1ω
2
6 − 2ω4ω1ω2ω5 − 2ω4ω3ω6ω1 + ω2

4ω
2
2

+ ω2
2ω

2
6 − 2ω6ω2ω3ω5 + ω2

3ω
2
5 + ω2

3ω
4
4

]
× [

r3ω1ω
2
5− ω4r

3ω2ω5− ω3
3µ + ω2

6r
3ω1− ω1µω2

3− ω1ω
2
2µ− ω4r

3ω3ω6
] /

r3

(19)
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(in actual fact for the machine computation the expansion for r in terms of the ωs was used)
which we may write in the clearer form2

D78 = L2
[
ω1

(
ω2

5 + ω2
6 − µ

r

)
− ω4 (ω2ω5 + ω3ω6)

]
, (20)

where

L2 := (ω2ω6 − ω3ω5)
2 + (ω3ω4 − ω1ω6)

2 + (ω2ω4 − ω1ω5)
2 (21)

is the square of the magnitude of the angular momentum.
In a similar fashion we find

D68 = L2
[
ω2

(
ω2

4 + ω2
6 − µ

r

)
− ω5 (ω1ω4 + ω3ω6)

]
(22)

and

D67 = L2
[
ω3

(
ω2

4 + ω2
5 − µ

r

)
− ω6 (ω1ω4 + ω2ω5)

]
. (23)

In D78,D68 and D67 we recognize the three Cartesian components of the Laplace–
Runge–Lenz vector multiplied by the square of the angular momentum. However, if we were
unaware that the angular momentum was conserved, we would have to use as first integrals
the expressions given.

Immediately one wonders what results are found if different combinations of the
symmetries are chosen for the rows of the matrix used to determine the first integral. We
find the following. In each case the unmentioned row is the vector field of the equation of
motion.

(i) If two of the nonlocal symmetries and the three rotation symmetries are used, i.e. a matrix
of type A26 (aeq A27 or A28), the determinant is zero.

(ii) If two of the nonlocal symmetries, two of the rotation symmetries and the rescaling
symmetry are used, we find results of the type

D58 = L2L2
5 D48 = L2L5L4 D38 = L2L5L3, (24)

where L3 = ω2ω6 − ω3ω5, L4 = ω3ω4 − ω1ω6 and L5 = ω1ω5 − ω2ω4 are the three
components of the angular momentum, indicating the general result

Dij+3 = L2LjLi, i, j = 3, 4, 5. (25)

(iii) The three of the nonlocal symmetries and two of the rotation symmetries are used,

D2i = 0, i = 3, 4, 5. (26)

(iv) If three of the nonlocal symmetries, one of the rotation symmetries and the rescaling
symmetry are used,

Dij = 0, i �= j = 3, 4, 5. (27)

The number of zeros may seem disappointing, but from previous experience it is not an
unexpected outcome [33].

2 As a practical tool, using the method of Jacobi’s last multiplier has been greatly enhanced with the advent of
symbolic manipulation codes which remove the multiplicitive drudgery from the computation. It is unfortunate that
the result, as delivered by these codes, is not always particularly transparent.
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4. First integrals galore

In [8] a method was proposed to solve second-order ordinary differential equations as an
‘attempt to address algorithmically their solution’, as the authors stated in the abstract. The
authors presented four equations: they determined a first integral of each equation by using
their procedure. In [30] it is shown that all four equations possess enough Lie point symmetries
to make them integrable by quadrature if not linearizable. Moreover, the method of Jacobi’s
last multiplier as exemplified above for the Kepler problem is put at work in order easily
to construct first integrals, a galore of them if the equation admits an eight-dimensional Lie
symmetry algebra. In order to fulfil the requirement of anonymous referees we present here
one of those examples as treated in [30].

In [8] the authors introduced the following equation of second order the first integral of
which ‘is not a rational function’ (example 4)3:

yuu′′ + uu′ + 2yuu′2 + yu′2 = 0. (28)

Using their proposed method Duarte et al derive the following nonrational first integral:

I = y + 1
2 log(yuu′). (29)

In [30] it is shown that equation (28) admits an eight-dimensional Lie symmetry algebra
generated by the following eight operators:

X1 = 1
4 e2u(2u − 1)y∂y

X2 = 1

16u
e2u(2u − 1)[4 log(y)yu∂y + (2u − 1)∂u]

X3 = 1

u
(2u − 1)∂u

X4 = 1

u
log(y)[4 log(y)yu∂y + (2u − 1)∂u] (30)

X5 = 1

u
e−2u∂u

X6 = 1

u
log(y) e−2u∂u

X7 = y∂y

X8 = log(y)y∂y

which means that equation (28) is linearizable by means of a point transformation [26]. In
[30] it is also shown how to find the linearizing transformation and thus the general solution of
equation (28) is easily derived. Moreover the method of Jacobi’s last multiplier is used with
the purpose of finding first integrals.

In order to apply the method of Jacobi’s last multiplier, equation (28) is written as the
system of two nonautonomous first-order ordinary differential equations:

u′ = ux, u′
x = − (2uxy + 1)u + uxy

uy
ux (31)

with ux a new obvious dependent variable. Of course, we have trivially to construct the first
prolongations of the generators (30) in order for each of them to generate a Lie symmetry of
system (31). For example the first to the prolongation of X1 is

X1
1

= 1
4 e2u(2u − 1)y∂y − 1

4 e2uux(4uuxy + 2u − 1)∂ux
.

3 Note that we have changed the original notation.
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The Jacobi’s last multiplier of system (31) cannot be constant, in contrast to the Kepler
problem, but has to satisfy the following equation:

d log(M)

dy
= 4uuxy + 2uxy + u

yu
. (32)

Note that system (31) is not autonomous which means that the corresponding matrices as
given in (13) have three columns and consequently there are 28 possible determinants to be
calculated. By way of illustration the matrix that we obtain with the choice of X1

1
and X3

1
is

C13 =




1 ux − (2uxy + 1)u + uxy

uy
ux

1

4
e2u(2u − 1)y 0 −1

4
e2uux(4uuxy + 2u − 1)

0
2u − 1

u

ux

u2




. (33)

First integrals of system (31) are then obviously obtained by taking any ratio of two
determinants which are not null. Using Maple 7 it is easy to find that the determinants
which are different from zero are the following4:

�14 = −ux

4u
e2u(−2u + 1 + 4uxyu log(y))2

�15 = u2
xy

�16 = ux

4u
(−2u + 1 + 4uxyu log(y))

�17 = −y2u3
xu e2u = −uxyu e2u�15

�18 = −1

4
yu2

x e2u(−2u + 1 + 4uxyu log(y)) = −uxyu e2u�16

�24 = − e2u

16u2y
(−2u + 1 + 4uxyu log(y))3

�25 = ux

4u
(−2u + 1 + 4uxyu log(y)) = �16

�26 = 1

16u2y
(−2u + 1 + 4uxyu log(y))2 = − 1

4uxyu e2u
�14

�27 = −1

4
yu2

x e2u(−2u + 1 + 4uxyu log(y)) = �18 = −uxyu e2u�16

�28 = − ux

16u
e2u(−2u + 1 + 4uxyu log(y))2 = −uxyu e2u�26 = 1

4
�14

�34 = 1

u2y
(−2u + 1 + 4uxyu log(y))2 = 16�26 = − 4

uxyu e2u
�14

�35 = −4
ux

u e2u
= − 4

uxyu e2u
�15

�36 = − 1

u2y e2u
(−2u + 1 + 4uxyu log(y)) = − 4

uxyu e2u
�16

�37 = 4u2
xy = 4�15

�38 = ux

u
(−2u + 1 + 4uxyu log(y)) = 4�16

4 We use the symbolism �ij to mean the determinant of the matrix which has Xi
1

and Xj
1

in the second and third

rows, respectively.
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�45 = 1

u2y e2u
(−2u + 1 + 4uxyu log(y)) = −�36 = 4

uxyu e2u
�16

�47 = −ux

u
(−2u + 1 + 4uxyu log(y)) = −�38 = −4�16

�56 = 1

u2y e4u
= 1

(uxyu e2u)2
�15

�58 = − ux

u e2u
= 1

4
�35 = − 1

uxyu e2u
�15

�67 = ux

u e2u
= −1

4
�35 = 1

uxyu e2u
�15

�78 = u2
xy = �15.

As a consequence the following are first integrals5 of system (31) and consequently of
equation (28):

I1 = �14

�15
= − e2u

4uxyu
(−2u + 1 + 4uxyu log(y))2

I2 = �14

�16
= −e2u(−2u + 1 + 4uxyu log(y))

I3 = �14

�17
= −uxyu e2u �14

�15
= −uxyu e2uI1 �⇒

I4 = uxyu e2u

I5 = �14

�18
= −uxyu e2u �14

�16
= −I4I2

I6 = �14

�24
= 4uuxy

−2u + 1 + 4uxyu log(y)

I7 = �15

�16
= 4uuxy

−2u + 1 + 4uxyu log(y)
= I6

I8 = �15

�24
= − 16u2u2

xy
2 e−2u

(−2u + 1 + 4uxyu log(y))3

I9 = �16

�24
= − 4uuxy e−2u

(−2u + 1 + 4uxyu log(y))2
.

Naturally we have omitted all the other possible combinations (210 in total) which yield the
same first integrals as above or a constant. Finally we note that the first integral I4 corresponds
to the first integral I, i.e. (29), which was determined in [8].

5. Final remarks

We have seen above how the symmetries of the Kepler problem enable us to use the method of
Jacobi’s last multiplier in order to compute the first integrals of the Kepler problem. We can
then infer that other systems of differential equations arising in various branches of physics
and other natural sciences possess conservation laws which can be found by the interaction
between the Jacobi last multiplier and their symmetries as exemplified within this paper. We
have also shown that in order to obtain first integrals one needs only to perform algebraic

5 We recall that (28) possesses just two functionally independent first integrals and naturally the listed integrals are
functions of two variables representing the two preferred integrals.
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operations, i.e. evaluate the determinant of a certain matrix, once the symmetries are known.
This is a more general method than using Noether’s theorem: in fact it can be used even if the
systems of differential equations do not come from a variational principle.
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